Thermal Conductivity of Ceramic Materials
Ceramics typically have low thermal conductivity values, making them good insulators in many applications. This property makes ceramics suitable for uses where heat retention or thermal insulation is desired, such as in the construction of kiln linings, thermal barriers, and heat-resistant coatings.
The following table provides a comprehensive list of thermal conductivity values for common ceramic materials, taken at room temperature (approximately 20°C or 68°F) and 1 atmospheric (atm) pressure. (1 atm = 101,325 Pa)
Click on the icon to switch between SI (W/m·K) and Imperial (BTU/h·ft·°F) units.
Calcium hexaboride (CaB6) | Borides | 39.29 |
Chromium boride (Cr5B3) | Borides | 15.8 |
Chromium diboride (CrB2) | Borides | 20 - 32 |
Chromium monoboride (CrB) | Borides | 20.1 |
Hafnium diboride (HfB2) | Borides | 57.1 |
Lanthanum hexaboride (LaB6) | Borides | 47.7 |
Molybdenum boride (Mo2B5) | Borides | 50 |
Niobium diboride (NbB2) | Borides | 17 - 23.5 |
Niobium boride (NbB) | Borides | 15.6 |
Tantalum diboride (TaB2) | Borides | 10.9 - 16.0 |
Thorium hexaboride (ThB6) | Borides | 44.8 |
Thorium tetraboride (ThB4) | Borides | 25 |
Titanium diboride (TiB2) | Borides | 64.4 - 96 |
Uranium diboride (UB2) | Borides | 51.9 |
Uranium tetraboride (UB4) | Borides | 4.0 |
Vanadium diboride (VB2) | Borides | 42.3 |
Zirconium diboride (ZrB2) | Borides | 57.9 |
Beryllium hemicarbide (Be2C) | Carbides | 21.0 |
Boron carbide (B4C) | Carbides | 27 |
Chromium carbide (Cr3C2) | Carbides | 19.2 |
Hafnium carbide (HfC) | Carbides | 22.15 |
Niobium carbide (NbC) | Carbides | 14.2 |
Silicon carbide (α-SiC) | Carbides | 42.5 |
Silicon carbide (β-SiC) | Carbides | 135 |
Tantalum carbide (TaC) | Carbides | 22.2 |
Thorium carbide (ThC) | Carbides | 28.9 |
Titanium carbide (TiC) | Carbides | 17 - 21 |
Tungsten carbide (WC) | Carbides | 121 |
Uranium dicarbide (UC2) | Carbides | 32.7 |
Vanadium carbide (VC) | Carbides | 24.8 |
Zirconium carbide (ZrC) | Carbides | 20.6 |
Aluminum nitride (AlN) | Nitrides | 30 |
Boron nitride (BN) | Nitrides | 15.4 |
Chromium nitride (CrN) | Nitrides | 12.1 |
Hafnium nitride (HfN) | Nitrides | 21.6 |
Niobium nitride (NbN) | Nitrides | 3.63 |
Silicon nitride (α-Si3N4) | Nitrides | 17 |
Silicon nitride (β-Si3N4) | Nitrides | 28 |
Tantalum nitride (TaN) | Nitrides | 8.3 |
Titanium nitride (TiN) | Nitrides | 29.1 |
Vanadium nitride (VN) | Nitrides | 11.25 |
Zirconium nitride (ZrN) | Nitrides | 20.9 |
Chromium disilicide (CrSi2) | Silicides | 106 |
Molybdenum disilicide (MoSi2) | Silicides | 58.9 |
Uranium silicide (U3Si2) | Silicides | 14.7 |
Aluminum sesquioxide (Al2O3) | Oxides | 35.6 - 39 |
Beryllium oxide (BeO) | Oxides | 245 - 250 |
Calcium oxide (CaO) | Oxides | 8 - 16 |
Hafnium dioxide (HfO2) | Oxides | 1.14 |
Magnesium oxide (MgO) | Oxides | 50 - 75 |
Samarium oxide (Sm2O3) | Oxides | 2.1 |
Silicon dioxide (SiO2) | Oxides | 1.4 |
Thorium dioxide (ThO2) | Oxides | 14.2 |
Uranium dioxide (UO2) | Oxides | 10 |
The thermal conductivity of a ceramic can vary depending on its specific composition, microstructure, and purity.
Related Tables
References: 1) Cardarelli, François. Materials Handbook: A Concise Desktop Reference. Switzerland: Springer International Publishing, 2018. 2) A.M. Howatson, P.G. Lun, J.D. Todd, P.D. Engineering Tables and Data. United Kingdom: University of Oxford, Department of Engineering Science, 2009. 3) CRC Materials Science and Engineering Handbook. United States: CRC Press, 2000.