Specific Heat Capacity of Ceramic Materials
Ceramics are known for their relatively high specific heat capacities compared to many other materials. This means that they can absorb and store a significant amount of heat energy without a significant rise in temperature.
The following table provides a comprehensive list of specific heat capacity values for different ceramics, taken at room temperature (approximately 20°C or 68°F) and 1 atmospheric (atm) pressure. (1 atm = 101,325 Pa)
Click on the icon to switch between SI (J/kg·K) and Imperial (BTU/lb·°F) units.
| Aluminum diboride (AlB2) | Borides | 897.87 |
| Aluminum dodecaboride (AlB12) | Borides | 954.48 |
| Chromium diboride (CrB2) | Borides | 712 |
| Hafnium diboride (HfB2) | Borides | 247.11 |
| Molybdenum diboride (MoB2) | Borides | 527 |
| Molybdenum boride (MoB) | Borides | 368 |
| Niobium diboride (NbB2) | Borides | 418 |
| Tantalum diboride (TaB2) | Borides | 237.55 |
| Tantalum boride (TaB) | Borides | 246.85 |
| Thorium tetraboride (ThB4) | Borides | 510 |
| Titanium diboride (TiB2) | Borides | 637.22 |
| Tungsten hemiboride (W2B) | Borides | 168 |
| Vanadium diboride (VB2) | Borides | 647.43 |
| Zirconium diboride (ZrB2) | Borides | 392.54 |
| Zirconium dodecaboride (ZrB12) | Borides | 523 |
| Beryllium hemicarbide (Be2C) | Carbides | 1397 |
| Boron carbide (B4C) | Carbides | 1854 |
| Silicon carbide (α-SiC) | Carbides | 700 |
| Silicon carbide (β-SiC) | Carbides | 1205 |
| Tantalum carbide (TaC) | Carbides | 190 |
| Titanium carbide (TiC) | Carbides | 841 |
| Uranium dicarbide (UC2) | Carbides | 147 |
| Zirconium carbide (ZrC) | Carbides | 205 |
| Aluminum nitride (AlN) | Nitrides | 820 |
| Beryllium nitride (Be3N2) | Nitrides | 1221 |
| Boron nitride (BN) | Nitrides | 711 |
| Chromium nitride (CrN) | Nitrides | 795 |
| Hafnium nitride (HfN) | Nitrides | 210 |
| Silicon nitride (Si3N4) | Nitrides | 700 |
| Tantalum nitride (TaN) | Nitrides | 210 |
| Titanium nitride (TiN) | Nitrides | 586 |
| Vanadium nitride (VN) | Nitrides | 586 |
| Zirconium nitride (ZrN) | Nitrides | 377 |
| Aluminum sesquioxide (Al2O3) | Oxides | 795 - 880 |
| Beryllium oxide (BeO) | Oxides | 996.5 |
| Calcium oxide (CaO) | Oxides | 753 |
| Cerium dioxide (CeO2) | Oxides | 389 |
| Chromium oxide (Cr2O3) | Oxides | 921 |
| Gadolinium oxide (Gd2O3) | Oxides | 276 |
| Hafnium dioxide (HfO2) | Oxides | 121 |
| Lanthanum oxide (La2O3) | Oxides | 288.9 |
| Magnesium oxide (MgO) | Oxides | 962 |
| Niobium pentoxide (Nb2O5) | Oxides | 502.4 |
| Samarium oxide (Sm2O3) | Oxides | 331 |
| Silicon dioxide (SiO2) | Oxides | 787 |
| Tantalum pentoxide (Ta2O5) | Oxides | 301.5 |
| Thorium dioxide (ThO2) | Oxides | 272.1 |
| Titanium dioxide (TiO2) | Oxides | 711 |
| Titanium monoxide (TiO) | Oxides | 628 |
| Titanium sesquioxide (Ti2O3) | Oxides | 679 |
| Uranium dioxide (UO2) | Oxides | 234.3 |
| Yttrium oxide (Y2O3) | Oxides | 439.6 |
The specific heat capacity of a ceramic material can vary depending on its composition, microstructure, and temperature.
References: 1) Cardarelli, François. Materials Handbook: A Concise Desktop Reference. Switzerland: Springer International Publishing, 2018. 2) A.M. Howatson, P.G. Lun, J.D. Todd, P.D. Engineering Tables and Data. United Kingdom: University of Oxford, Department of Engineering Science, 2009. 3) CRC Materials Science and Engineering Handbook. United States: CRC Press, 2000.