Melting Point of Ceramic Materials
Ceramics are typically composed of ionic or covalent bonds, which are very strong and require a lot of energy to break. As a result, they tend to have very high melting points, often exceeding 1000 °C (1832 °F).
The following table provides a comprehensive list of melting point values for different ceramic materials at 1 atmospheric (atm) pressure. (1 atm = 101,325 Pa)
Click on the icon to switch between degrees Celsius (°C) and degrees Fahrenheit (°F) units.
| Aluminum diboride (AlB2) | Borides | 1650 |
| Aluminum dodecaboride (AlB12) | Borides | 2070 |
| Barium hexaboride (BaB6) | Borides | 2270 |
| Beryllium boride (Be4B) | Borides | 1160 |
| Beryllium diboride (BeB2) | Borides | 1970 |
| Beryllium hexaboride (BeB6) | Borides | 2070 |
| Calcium hexaboride (CaB6) | Borides | 2235 |
| Cerium hexaboride (CeB6) | Borides | 2550 |
| Chromium boride (Cr5B3) | Borides | 1900 |
| Chromium monoboride (CrB) | Borides | 2100 |
| Cobalt boride (CoB) | Borides | 1460 |
| Hafnium diboride (HfB2) | Borides | 3250 |
| Hafnium boride (HfB) | Borides | 2900 |
| Iron diboride (FeB2) | Borides | 1390 |
| Lanthanum hexaboride (LaB6) | Borides | 2715 |
| Molybdenum boride (Mo2B5) | Borides | 2210 |
| Molybdenum diboride (MoB2) | Borides | 2100 |
| Niobium diboride (NbB2) | Borides | 3050 |
| Silicon hexaboride (SiB6) | Borides | 1950 |
| Thorium hexaboride (ThB6) | Borides | 2450 |
| Thorium tetraboride (ThB4) | Borides | 2500 |
| Titanium boride (TiB) | Borides | 2060 |
| Tungsten hemiboride (W2B) | Borides | 2740 |
| Tungsten boride (WB) | Borides | 2800 |
| Uranium diboride (UB2) | Borides | 2430 |
| Uranium dodecaboride (UB12) | Borides | 1500 |
| Zirconium dodecaboride (ZrB12) | Borides | 2680 |
| Aluminum carbide (Al4C3) | Carbides | 2100 |
| Beryllium hemicarbide (Be2C) | Carbides | 2130 |
| Chromium carbide (Cr3C2) | Carbides | 1895 |
| Diamond (C) | Carbides | 3550 |
| Graphite (C) | Carbides | 3650 |
| Molybdenum carbide (MoC) | Carbides | 2577 |
| Niobium hemicarbide (Nb2C) | Carbides | 3080 |
| Niobium carbide (NbC) | Carbides | 3610 |
| Silicon carbide (SiC) | Carbides | 2730 |
| Tantalum carbide (TaC) | Carbides | 3880 |
| Thorium carbide (ThC) | Carbides | 2500 |
| Tungsten carbide (WC) | Carbides | 2785 |
| Tungsten hemicarbide (W2C) | Carbides | 2800 |
| Uranium carbide (UC) | Carbides | 2370 |
| Vanadium carbide (VC) | Carbides | 2810 |
| Zirconium carbide (ZrC) | Carbides | 3530 |
| Aluminum nitride (AlN) | Nitrides | 2230 |
| Beryllium nitride (Be3N2) | Nitrides | 2200 |
| Chromium nitride (CrN) | Nitrides | 1770 |
| Hafnium nitride (HfN) | Nitrides | 3310 |
| Molybdenum nitride (MoN) | Nitrides | 1750 |
| Niobium nitride (NbN) | Nitrides | 2575 |
| Silicon nitride (Si3N4) | Nitrides | 1900 |
| Tantalum nitride (TaN) | Nitrides | 3090 |
| Thorium nitride (Th2N3) | Nitrides | 1750 |
| Titanium nitride (TiN) | Nitrides | 2950 |
| Vanadium nitride (VN) | Nitrides | 2050 |
| Zirconium nitride (ZrN) | Nitrides | 2950 |
| Chromium silicide (Cr3Si) | Silicides | 1770 |
| Molybdenum disilicide (MoSi2) | Silicides | 1870 |
| Tantalum disilicide (TaSi2) | Silicides | 2200 |
| Tantalum silicide (Ta5Si3) | Silicides | 2500 |
| Thorium disilicide (ThSi2) | Silicides | 1850 |
| Titanium disilicide (TiSi2) | Silicides | 1500 |
| Tungsten disilicide (WSi2) | Silicides | 2160 |
| Tungsten silicide (W5Si3) | Silicides | 2320 |
| Uranium silicide (U3Si2) | Silicides | 1665 |
| Vanadium disilicide (VSi2) | Silicides | 1700 |
| Vanadium silicide (V3Si) | Silicides | 1935 |
| Zirconium disilicide (ZrSi2) | Silicides | 1620 |
| Aluminum sesquioxide (Al2O3) | Oxides | 2050 |
| Calcium oxide (CaO) | Oxides | 2610 |
| Cerium dioxide (CeO2) | Oxides | 2400 |
| Chromium oxide (Cr2O3) | Oxides | 2435 |
| Dysprosium oxide (Dy2O3) | Oxides | 2410 |
| Europium oxide (Eu2O3) | Oxides | 2350 |
| Gadolinium oxide (Gd2O3) | Oxides | 2420 |
| Hafnium dioxide (HfO2) | Oxides | 2800 |
| Lanthanum oxide (La2O3) | Oxides | 2315 |
| Magnesium oxide (MgO) | Oxides | 2850 |
| Niobium pentoxide (Nb2O5) | Oxides | 1510 |
| Samarium oxide (Sm2O3) | Oxides | 2335 |
| Silicon dioxide (SiO2) | Oxides | 1710 |
| Tantalum pentoxide (Ta2O5) | Oxides | 1875 |
| Thorium dioxide (ThO2) | Oxides | 3350 |
| Titanium monoxide (TiO) | Oxides | 1750 |
| Titanium sesquioxide (Ti2O3) | Oxides | 1840 |
| Trititanium pentoxide (Ti3O5) | Oxides | 1780 |
| Uranium dioxide (UO2) | Oxides | 2850 |
| Yttrium oxide (Y2O3) | Oxides | 2440 |
| Zirconium dioxide (ZrO2) | Oxides | 2710 |
The melting point of a ceramic material may vary depending on the specific composition and structure of the ceramic.
References: 1) Cardarelli, François. Materials Handbook: A Concise Desktop Reference. Switzerland: Springer International Publishing, 2018. 2) CRC Handbook of Chemistry and Physics, 97th Edition. United Kingdom: CRC Press, 2016-2017. 3) CRC Materials Science and Engineering Handbook. United States: CRC Press, 2000.