Electrical Conductivity of Ceramic Materials
Ceramics generally exhibit poor electrical conductivity compared to metals and conductive materials. The electrical conductivity of ceramics is primarily influenced by their ionic or covalent bonding nature, which results in a lack of free electrons. Unlike metals, where electrons can move freely, ceramics typically have a tight arrangement of atoms that restricts electron movement.
The following table provides a comprehensive list of electrical conductivity values for common ceramics in Siemens per meter (S/m) units.
Unless stated otherwise, all values are taken at standard room temperature (approximately 20°C or 68°F) and 1 atmospheric (atm) pressure. (1 atm = 101,325 Pa)
Barium hexaboride (BaB6) | Borides | 1.3 |
Beryllium diboride (BeB2) | Borides | 0.01 |
Beryllium hexaboride (BeB6) | Borides | 10×-11 |
Calcium hexaboride (CaB6) | Borides | 0.45 |
Chromium boride (Cr5B3) | Borides | 1.6 |
Chromium diboride (CrB2) | CLASS | 4.8 |
Lanthanum hexaboride (LaB6) | Borides | 5.7 |
Molybdenum diboride (MoB2) | Borides | 2.2 |
Silicon hexaboride (SiB6) | Borides | 0.0005 |
Tantalum boride (TaB) | Borides | 1 |
Titanium boride (TiB) | Borides | 2.5 |
Tungsten boride (WB) | Borides | 24 |
Vanadium diboride (VB2) | Borides | 4.3 |
Zirconium diboride (ZrB2) | Borides | 11 |
Boron carbide (B4C) | Carbides | 0.022 |
Chromium carbide (Cr3C2) | Carbides | 1.3 |
Graphite (C) | Carbides | 0.072 |
Hafnium carbide (HfC) | Carbides | 2.2 |
Molybdenum carbide (MoC) | Carbides | 2 |
Thorium carbide (ThC) | Carbides | 4 |
Titanium carbide (TiC) | Carbides | 1.9 |
Tungsten carbide (WC) | Carbides | 5.2 |
Tungsten hemicarbide (W2C) | Carbides | 1.2 |
Uranium carbide (UC) | Carbides | 2 |
Zirconium carbide (ZrC) | Carbides | 1.5 |
Aluminum nitride (AlN) | Nitrides | 10×-15 |
Boron nitride (BN) | Nitrides | 10×-17 |
Chromium nitride (CrN) | Nitrides | 0.16 |
Hafnium nitride (HfN) | Nitrides | 3 |
Niobium nitride (NbN) | Nitrides | 1.3 |
Titanium nitride (TiN) | Nitrides | 4.6 |
Vanadium nitride (VN) | Nitrides | 1.2 |
Zirconium nitride (ZrN) | Nitrides | 7.4 |
Chromium disilicide (CrSi2) | Silicides | 0.071 |
Chromium silicide (Cr3Si) | Silicides | 2.2 |
Molybdenum disilicide (MoSi2) | Silicides | 4.7 |
Tantalum disilicide (TaSi2) | Silicides | 12 |
Titanium disilicide (TiSi2) | Silicides | 0.81 |
Tungsten disilicide (WSi2) | Silicides | 3 |
Uranium silicide (U3Si2) | Silicides | 0.67 |
Vanadium disilicide (VSi2) | Silicides | 11 |
Vanadium silicide (V3Si) | Silicides | 0.49 |
Zirconium disilicide (ZrSi2) | Silicides | 0.62 |
Aluminum sesquioxide (Al2O3) | Oxides | 5×10-22 |
Calcium oxide (CaO) | Oxides | 1e-12 |
Cerium dioxide (CeO2) | Oxides | 10×-8 |
Hafnium dioxide (HfO2) | Oxides | 2×10-14 |
Niobium pentoxide (Nb2O5) | Oxides | 1.8×10-11 |
Silicon dioxide (SiO2) | Oxides | 10×-18 |
Tantalum pentoxide (Ta2O5) | Oxides | 10×-10 |
Thorium dioxide (ThO2) | Oxides | 2.5×10-18 |
Titanium dioxide (TiO2) | Oxides | 10×-17 |
Uranium dioxide (UO2) | Oxides | 2.6×10-9 |
Zirconium dioxide (ZrO2) | Oxides | 1.3×-6 |
The electrical conductivity values in this table are approximate and can vary based on factors like impurities, defects, and the specific ceramic composition.