Thermal Expansion of Ceramic Materials
Ceramics generally have low coefficients of thermal expansion, meaning that they expand less than other materials when heated. This is due to the strong atomic bonds in ceramic materials.
The following table provides a comprehensive list of linear thermal expansion coefficients for common ceramics, taken at room temperature (approximately 20°C or 68°F) and 1 atmospheric (atm) pressure. (1 atm = 101,325 Pa)
Click on the icon to switch between (1/°C) and (1/°F) units.
Calcium hexaboride (CaB6) | Borides | 6.48 |
Chromium boride (Cr5B3) | Borides | 13.7 |
Chromium diboride (CrB2) | Borides | 6.2 - 7.5 |
Chromium monoboride (CrB) | Borides | 12.3 |
Hafnium diboride (HfB2) | Borides | 6.3 - 7.6 |
Molybdenum boride (Mo2B5) | Borides | 8.6 |
Molybdenum diboride (MoB2) | Borides | 7.7 |
Niobium diboride (NbB2) | Borides | 8.0 - 8.6 |
Niobium boride (NbB) | Borides | 12.9 |
Tantalum diboride (TaB2) | Borides | 8.2 - 8.8 |
Thorium hexaboride (ThB6) | Borides | 7.8 |
Thorium tetraboride (ThB4) | Borides | 7.9 |
Titanium diboride (TiB2) | Borides | 7.6 - 8.64 |
Tungsten hemiboride (W2B) | Borides | 6.7 |
Tungsten boride (WB) | Borides | 6.9 |
Uranium diboride (UB2) | Borides | 9.0 |
Uranium dodecaboride (UB12) | Borides | 4.6 |
Vanadium diboride (VB2) | Borides | 7.6 - 8.3 |
Zirconium diboride (ZrB2) | Borides | 5.5 - 8.3 |
Beryllium hemicarbide (Be2C) | Carbides | 10.5 |
Boron carbide (B4C) | Carbides | 2.6 - 5.6 |
Chromium carbide (Cr3C2) | Carbides | 10.3 |
Diamond (C) | Carbides | 2.16 |
Graphite (C) | Carbides | 0.6 - 4.3 |
Hafnium carbide (HfC) | Carbides | 6.3 |
Molybdenum carbide (MoC) | Carbides | 5.76 |
Niobium carbide (NbC) | Carbides | 6.84 |
Silicon carbide (α-SiC) | Carbides | 4.3 - 4.6 |
Silicon carbide (β-SiC) | Carbides | 4.5 |
Tantalum carbide (TaC) | Carbides | 6.64 - 8.4 |
Thorium carbide (ThC) | Carbides | 6.48 |
Titanium carbide (TiC) | Carbides | 7.5 - 7.7 |
Tungsten carbide (WC) | Carbides | 6.9 |
Tungsten hemicarbide (W2C) | Carbides | 3.84 |
Uranium carbide (UC) | Carbides | 11.4 |
Uranium dicarbide (UC2) | Carbides | 14.6 |
Vanadium carbide (VC) | Carbides | 4.9 |
Zirconium carbide (ZrC) | Carbides | 6.8 |
Aluminum nitride (AlN) | Nitrides | 5.3 |
Boron nitride (BN) | Nitrides | 7.54 |
Chromium nitride (CrN) | Nitrides | 2.34 |
Hafnium nitride (HfN) | Nitrides | 6.5 |
Niobium nitride (NbN) | Nitrides | 10.1 |
Silicon nitride (Si3N4) | Nitrides | 2.5 |
Tantalum nitride (TaN) | Nitrides | 3.2 |
Titanium nitride (TiN) | Nitrides | 9.35 |
Vanadium nitride (VN) | Nitrides | 8.1 |
Zirconium nitride (ZrN) | Nitrides | 7.24 |
Chromium disilicide (CrSi2) | Silicides | 13.0 |
Chromium silicide (Cr3Si) | Silicides | 10.5 |
Molybdenum disilicide (MoSi2) | Silicides | 8.12 |
Tantalum disilicide (TaSi2) | Silicides | 8.8 - 9.54 |
Titanium disilicide (TiSi2) | Silicides | 10.4 |
Tungsten disilicide (WSi2) | Silicides | 8.28 |
Uranium silicide (U3Si2) | Silicides | 14.8 |
Vanadium disilicide (VSi2) | Silicides | 11.2 |
Vanadium silicide (V3Si) | Silicides | 8.0 |
Zirconium disilicide (ZrSi2) | Silicides | 8.6 |
Aluminum sesquioxide (Al2O3) | Oxides | 7.1 - 8.3 |
Beryllium oxide (BeO) | Oxides | 7.5 - 9.7 |
Calcium oxide (CaO) | Oxides | 3.88 |
Cerium dioxide (CeO2) | Oxides | 10.6 |
Chromium oxide (Cr2O3) | Oxides | 10.9 |
Dysprosium oxide (Dy2O3) | Oxides | 7.74 |
Europium oxide (Eu2O3) | Oxides | 7 |
Gadolinium oxide (Gd2O3) | Oxides | 10.44 |
Hafnium dioxide (HfO2) | Oxides | 5.85 |
Lanthanum oxide (La2O3) | Oxides | 11.9 |
Magnesium oxide (MgO) | Oxides | 11.52 |
Samarium oxide (Sm2O3) | Oxides | 10.3 |
Silicon dioxide (SiO2) | Oxides | 0.55 |
Thorium dioxide (ThO2) | Oxides | 9.54 |
Titanium dioxide (TiO2) | Oxides | 7.14 |
Titanium monoxide (TiO) | Oxides | 9.19 |
Uranium dioxide (UO2) | Oxides | 11.2 |
Yttrium oxide (Y2O3) | Oxides | 8.1 |
The thermal expansion of a ceramic material can vary depending on its composition and microstructure.
Related Tables
References: 1) Cardarelli, François. Materials Handbook: A Concise Desktop Reference. Switzerland: Springer International Publishing, 2018. 2) A.M. Howatson, P.G. Lun, J.D. Todd, P.D. Engineering Tables and Data. United Kingdom: University of Oxford, Department of Engineering Science, 2009. 3) CRC Materials Science and Engineering Handbook. United States: CRC Press, 2000.